tf.train.AdamOptimizer()函数是Adam优化算法:是一个寻找全局最优点的优化算法,引入了二次方梯度校正。
参数:
本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。
实际上运行tf.train.AdamOptimizer(),除了利用反向传播算法对权重和偏置项进行修正外,也在运行中不断修正学习率。根据其损失量学习自适应,损失量大则学习率大,进行修正的角度越大,损失量小,修正的幅度也小,学习率就小,但是不会超过自己所设定的学习率。